Some Issues in Dense Linear Algebra for Multicore and Special Purpose Architectures
نویسندگان
چکیده
We address some key issues in designing dense linear algebra (DLA) algorithms that are common for both multi/many-cores and special purpose architectures (in particular GPUs). We present them in the context of an LU factorization algorithm, where randomization techniques are used as an alternative to pivoting. This approach yields an algorithm based entirely on a collection of small Level 3 BLAS type computational tasks, which has emerged as a common goal in designing DLA algorithms for new architectures. Other common trends, also considered here, are block asynchronous task execution and “Block” layouts for the data associated with the separate tasks. We present numerical results and other specific experiments with DLA algorithms on NVIDIA GPUs using CUDA. The GPU results are also of interest themselves as we show a performance of up to 160 Glop/s on a single Quadro FX 5600 card.
منابع مشابه
Analysis of dynamically scheduled tile algorithms for dense linear algebra on multicore architectures
The objective of this paper is to analyze the dynamic scheduling of dense linear algebra algorithms on shared-memory, multicore architectures. Current numerical libraries (e.g., linear algebra package) show clear limitations on such emerging systems mainly because of their coarse granularity tasks. Thus, many numerical algorithms need to be redesigned to better fit the architectural design of t...
متن کاملAutomatically Tuned Dense Linear Algebra for Multicore+GPU
The Multicore+GPU architecture has been adopted in some of the fastest supercomputers listed on the TOP500. The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid architectures processors like Multicore+GPU. However, to provide portable performance, manual parameter tuning is required. This paper presents automatically tuned LU factorizat...
متن کاملToward Scalable Matrix Multiply on Multithreaded Architectures
We show empirically that some of the issues that affected the design of linear algebra libraries for distributed memory architectures will also likely affect such libraries for shared memory architectures with many simultaneous threads of execution, including SMP architectures and future multicore processors. The always-important matrix-matrix multiplication is used to demonstrate that a simple...
متن کاملA Fully Empirical Autotuned Dense QR Factorization for Multicore Architectures
Tuning numerical libraries has become more difficult over time, as systems get more sophisticated. In particular, modern multicore machines make the behaviour of algorithms hard to forecast and model. In this paper, we tackle the issue of tuning a dense QR factorization on multicore architectures. We show that it is hard to rely on a model, which motivates us to design a fully empirical approac...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کامل